The site has moved to a new server, and there are now some issues to fix. Please report anything needing fixing with a comment to the homepage.

# The Giants

The Giants have the smallest army, the only one without a row of pawns. Most pieces are incapable of moving to a square next to them.

### Starting Setup

The starting setup for black is the mirror image of that for white.

```    +---+---+---+---+---+---+---+---+---+---+
3 |   |   |   |   | G | G |   |   |   |   |
+---+---+---+---+---+---+---+---+---+---+
2 |   | Cy| M | Co| G | G | Co| M | Cy|   |
+---+---+---+---+---+---+---+---+---+---+
1 |   |   |   | B | K | T | 2 |   |   |   |
+---+---+---+---+---+---+---+---+---+---+
a   b   c   d   e   f   g   h   i   j
```

### Piece Listings

Each piece is listed with its abbreviation in parentheses after its name, followed by the notation for its move in Ralph Betza's notation in brackets, if its move can be expressed in that notation.

#### Giant (G) [DA]

The Giant jumps two squares in any direction.

#### Cyclops (Cy)

The Cyclops moves like a Rook, except that it cannot move only one square.

#### Mammoth Rider (M)

The Mammoth Rider moves one square orthogonally, and if that square was empty may continue by moving a second square in any orthogonal direction (not just the direction it just moved in), except that it may not return to its starting position.

#### Colossus (Co) [DAN]

The Colossus has the combined moves of a Knight and a Giant.

The Two-Headed Cyclops moves like a Griffion from Grande Acedrex, but cannot make a one square move. (It moves one square diagonally, followed by moving one or more squares orthogonally away from its starting position.)

#### Behemoth Rider (B)

The Behemoth Rider moves one square orthogonally up to three times, free to change direction each time, except that it may not move back to its starting position.

#### Titan (T) [HGLJ]

The Titan jumps to any square that is exactly three squares away.

#### King (K) [K]

The King is identical to a King in standard Chess, except that it can not castle.

Written by Peter Hatch.
WWW page created: November 26, 2000. ﻿