H. G. Muller wrote on Mon, Dec 10, 2018 06:45 PM UTC:
But the conclusion that lone B = N was originally not from a computer study at all: it was something Larry Kaufman noticed from a huge database of human GM games. In otherwise materially equal positions, the Knight won as often as the Bishop.
He detailed this result, though, by also classifying the B vs N positions by number of Pawns. There he found that the equality was only exact when each side had 5 Pawns; with fewer Pawns the Bishop advantage grows, with more Pawns the Knight advantage grows.
If you don't believe that (i.e. if you believe GMs in general don't know what they are doing when they are playing where the B vs N imbalance occurs), don't blame computer studies... Most engines set the value of a lone Bishop somewhat higher than that of a Knight, b.t.w.
But the conclusion that lone B = N was originally not from a computer study at all: it was something Larry Kaufman noticed from a huge database of human GM games. In otherwise materially equal positions, the Knight won as often as the Bishop.
He detailed this result, though, by also classifying the B vs N positions by number of Pawns. There he found that the equality was only exact when each side had 5 Pawns; with fewer Pawns the Bishop advantage grows, with more Pawns the Knight advantage grows.
If you don't believe that (i.e. if you believe GMs in general don't know what they are doing when they are playing where the B vs N imbalance occurs), don't blame computer studies... Most engines set the value of a lone Bishop somewhat higher than that of a Knight, b.t.w.