[ List Earliest Comments Only For Pages | Games | Rated Pages | Rated Games | Subjects of Discussion ]
Check out Janggi (Korean Chess), our featured variant for December, 2024.
Check out Janggi (Korean Chess), our featured variant for December, 2024.
Isn't that obvious? To intersect they would need to have the same ratio of n and m. But there is only a single irreducible representation of n/m. (In other words, if n/m = n'/m' then nm' = n'm, and have the same factors. But since none of the factors in n is in m, they must all be in n', and none of the factors in n' is in m', and must be in n. So n = n'. This relies on the factorization of a number to be unique.)